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ABSTRACT  

Many emerging social sites, famous forums, review sites, and many bloggers generate huge amount of data in the 
form of user sentimental reviews, emotions, opinions, arguments, viewpoints etc. about different social events, 

products, brands, and politics, movies etc. Sentiments expressed by the users has great effect on readers, political 

images, online vendors. So the data present in scattered and unstructured manner needs to be managed properly and 

in this context sentiment analysis has got attention at very large level. Sentiment analysis can be defined as 

organization of the text which is used to understand the mindsets or feelings expressed in the form of different 

manners such as negative, positive, neutral, not satisfactory etc. This paper explains the implementation and 

accuracy of sentiment analysis using Tensor flow and python with any kind of text data. It works on embedding, 

LSTM and Sigmoid layers and finds the accuracy of data in iterative manner for better result 
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I. INTRODUCTION 
 

World has seen some major advancements in computing technologies in the last decade. Natural Language 

understanding has become a prime important in last few years with the arrival of machine learning (ML) and 

advancements like deep learning [1] and artificial intelligence. Computing machines can always be programmed and 

made to learn things, which help them to perform some particular operations. The main problem is the inability to 

understand and comprehend things just like humans. But with the popularity of neural networks[2][3] and advances 

that it has made, deep learning[3][4] and artificial intelligence have evolved rapidly and is making revolutionary 

shifts in almost all the industries and it also has started to engineer machines into learning, understanding and 

implementing actions on their own.  

 
Some of the examples which can be seen in the real world can be like Computers playing and beating players in 

games like Chess and Go, Self-Driving Cars etc. Natural Language Processing (NLP) can be used for wide range of 

applications which uses natural language understanding to find the meaning and context behind the text and use it to 

solve various problems. Text Semantics is used to understand the meaning of text or language and when words are 

combined to make sentences, these words then have lexical and contextual relations between them, which further 

leads to other various types of relationships and hierarchies. Semantics is the center point of all this to analyze the 
relationships and extract meaningful data from them. Semantics is totally related with the context and meaning, 

while the structure of the text holds little or no significance here. But there may be times when the syntax and 

arrangement of words helps us in extracting the meaning data from the context of words and helps us in 

differentiation of things like “Apple can be a fruit” from “Apple is a technology company”. 
 

II. SENTIMENT ANALYSIS 

 
Sentiment analysis is one of the most popular application of text-based analytics and is used in large number of web 

sites, mobile applications, tutorials etc. applications which focuses on analyzing sentiments from different text 

resources ranging from corporate surveys like Google Opinions to Movie Reviews like on International Movie 

Database(IMDB). The major aspect of sentiment analysis is to analyze the body of text to find and understand the 

opinion expressed on the basis of different factors like mood or modality etc. Sentiment analysis works best on 

subjective context rather than objective context. It is because when text is based on objective context, then text has 
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mainly comprised of normal sentences without expressing any sort of mood, emotions or feelings. Sentiment 

analysis is used in large extent these days in social media[5] giants like Facebook and Twitter[5], ecommerce web 

sites, product related web sites, movie review sites etc. by understanding the opinions of people. Textual Data, 

although is unstructured, mainly comprised of two types: Objective, which is also known as factual based and 

Subjective, which is also known as Opinion based. Social Media, Survey Sites like Google Opinion, and feedback 

data like Movie reviews or Product reviews etc. are mainly opinion related data which expresses the judgement, 
emotions and feelings of human beings. 

 
 Sentiment analysis, also popularly known as Opinion Mining can be explained as the process that using NLP 

techniques, lexical resources, linguistics, and machine learning (ML) to fetch data like emotions, mood and modality 

etc. and then use the fetched data to compute the polarity of the text document [6]. From polarity, means to find if 

the text document expresses positive, negative, or neutral sentiment. There can be much more advanced analysis 
where more complex emotions can be used like sadness, sarcasm, anger etc. 
 
III. IMPLEMENTATION AND RESULTS 

 
Recurrent neural networks (RNN) are connectionist models with the ability to selectively pass information across 

sequence steps, while processing sequential data one at a time [12]  
 
RNN is always more accurate than using a feed forward network as it also includes the information about the 

sequence of words. We have used a data set of twitter posts and comments, which are accompanied by labels. Words 

can be passed in the embedded layer as thousands of words needs to have much more efficient input representation 

than using one-hot encoded vectors and then from embedded layer representations, it can be passed to the LSTM 

cells, which will further add recurrent network connections to help add sequence of words in the data. And in the 

last, LSTM cells will move to sigmoid layer which brings the output. We are using sigmoid as we are predicting of 

the text is having positive or negative sentiment. 
 

 
Figure 1:  LSTM Model for Sentiment Analysis 

 
Two libraries that we need to import before starting the code are: 
• Numpy – import numpy as np 
• Tensorflow – import tensorflow are tf 
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We need to open or call the reviews and label files and read them. After reading all the content, 2000 characters are 

pushed from the reviews file and they will be preprocessed in the next step. When we are building a neural network, 

the very first step after after fetching the data from the file is to get all the data collected from the file to be in proper 

form so that it can be feeded in to the network . As we are using embedded layer, therefore we need to encode every 

word with an integer. For example, in our file of reviews we can eliminate the period operators and it has to be 

delimited with the new line characters i.e. \n. For that, what we will be doing is to split the text data into every 
review using \n as a delimiter. After that one can combine all the split reviews together into a single big string. 

 

 
Figure 2: To remove punctioan  

 
Punctuation can be removed using the above code. Then one can get all the text without the newlines and it has to be 

split into individual words. 

 

 
Figure 3: Splitting into individual words 

 
As shown above in the figure, individual words are taken out of the reviews file and next step is to encode the words 

which can be done by first do the embedding lookup which needs integers to be passed in to the network. The best 

which can be used for this is to create a dictionary that maps the words in the vocabulary and changes into integers. 

After that every review has to be changed into the integer so that they can also be passed to the network.  Code 

which has been used to convert the words into integers is given below: 
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Figure 4: To change words into integers 

 
Above code changes words into integers. We have built a dictionary that maps the words in to integers .We will also 

be going to pad out input vectors with 0s, therefore it is necessity that out integers starts with 1 and not 0. The 

converted values from reviews to integers will be stored in a new list known as review_ints. We have used two 

different labels, i.e. Positive and Negative, so in order to use them, we need to convert them into 0 and 1, which is 
done in the below code: 
 

 
Figure 5: Assignment of labels- Positive and Negative 

 
Now after splitting the reviews, one needs to check the reviews length if there are any zero length reviews present. If 

there exists some zero length reviews, then they have to be discarded from the next step. So we have deleted the 
review which has 0 length from the reviews_ints list by using below given code: 
 
reviews_ints = [each for each in reviews_ints if len(each) > 0] 
 
In the next step, we have created an array with the name features and it holds the data that we have to pass on to the 

network. This data comes from the review_ints, as we have to feed integers to our network. Every row will be 200 

elements long and padded with 0s in case words are shorter than 200 words. For example if someone‟s review or 

tweet is [„world‟ „is‟ „great‟],[127, 58, 178] as integers, then the row will look like [0,0,0,0,……………..,0,0, 127, 

58, 178]. In case the review is longer than 200 words, then the first 200 words can act as feature vector. There are 

various methods with which we can do this, we have used the following code shown in below figure inside a Python 

Jupyter Notebook that also includes the output: 
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Figure 6: Converting into matrix 

 
After getting all the data in proper form in an array of integers, Training and validation will be done by creating a 

training and validation set. We have created sets for features and the labels. We have created a split fraction variable 

i.e. split_frac, which is the fraction of the data that is to be kept in the training dataset with the code set given below: 

 

 
Figure 7: Training and Validation 

 
As we have 25000 line and labels dataset, we have splitted it with the train and text fractions of 0.8, 0.1 and 0.1 with 

final shapes look like in the following format: 



 
[Kaur, 5(7): July 2018]  ISSN 2348 – 8034 
DOI: 10.5281/zenodo.1316903                                                                                                        Impact Factor- 4.022 

    (C)Global Journal Of Engineering Science And Researches 

 

341 

                         Feature Shapes: 
Train set:          (20000, 200)  
Validation set:  (2500, 200)  
Test set:            (2501, 200) 
 
Build the graph: 
We have defined various parameters in this to create a graph: 
Lstm_size – It is the no. of units in the LSTM‟s hidden layers. If larger, provides great performance. Mostly used 

values are 128, 256, 512, 1024 etc. 
Lstml_layers  - It is the no. of LSTM layers in the network. We have started it with one.  
Batch_size – It means the no. of reviews which can be pushed in a single training pass.  
Learning_rate 
We are using 200 element large review vectors. Every batch consists of batch_size vectors. As we are using 

tensorflow library, we have used some inbuilt functions of tensorflow to create some placeholders i.e. inputs, labels 

and keep_prob by using tf.placeholder. labels. Keep_prob is a 0-D tensor, therefore there is no need to provide the 

size to tf.placeholder. Below is the code used to use tensorflow to create 0-D and 2-D tensors. 
 

 
Figure 8: To use Tensor Flow to create 0-D and 2-D tensors 

 
Embedding: Embedding is a necessary part of our work as number of words in our vocabulary is over 70,000 and it 

will create a mess if we do one-hot-encode for our classes. What we have done is that we have creates an embedding 

layer and then we used that layer as a lookup table. We have created a new layer and make the network learn about 

the weights. We have created an embedded lookup matrix using a tf.Variable. Then, we have used that embedded 

matrix to find the embedded vectors which can be passed to the LSTM cells using tf.nn.embedding_lookup. What 

this function does is that it will take embedding matric and a review vector as an input tensor and updates or output 

with another tensor with the embedded vectors.  Therefore in case the embedding layer consists of 300 units, then 

the function will return the tensor with size of [batch_size , 300] 

 

 
Figure 9: Embedding 
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After Embedding, now we will create LSTM cells which will be in use in recurrent networks with Tensorflow and 

we will define how the cell will show up. It is not like we are building a graph, but it actually is defining the type of 

cells in a graph. We have created RNNs using the below code: 

 

 
Figure 10: Creation of LSTM cell 

 
Above figure shows the code that is to be used to create the LSTM cell. We have also added drop out to it with the 

help of Dropout Wrapper. Then we created multiple LSTM layers using MultiRNNCell. Now in the last phase, we 
need to run the data in to the RNN nodes. We have used tensorflow‟s dynamic_rnn function to achieve this: 

 

 
Figure 11: Creation of multiple LSTM layers using MultiRNNCell 

 
To check the accuracy, we have used the following code, all the data goes inside the checkpoint directory and it is 

the prerequisite that checkpoint directory has to be there in the Pycharm directory of Jupyter notebook, if one is 

using Pycharm synced with python interpreter and Jupyter notebook, if checkpoints directory is not present, then our 

code will not work and brings an error in case of our code: 
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Figure 13: To run all iterations and Epoch 

 
Above code uses tensorflow session function and run all the iterations and Epoch to provide the accuracy in 

accuracy level. 

 
Below is the iterative output of RNN based sentiment analysis accuracy: 
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Figure 14: Accuracy after each 5 iterations 

 

As you can see from the above output, we did iterative accuracy to split it into smaller parts for better result and we 

have an average accuracy of 0.8. As outputs are taken on iterative basis, therefore below graph is used to plot the 

accuracy at each epoch interval: 
 

 
Figure 15: Graph to show RNN Accuracy 
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IV. CONCLUSION 

 
Sentiment Analysis is the application which is used by many businesses to expand their growth. It uses machine 

learning and deep learning algorithms which are integrated with the text mining to bring meaningful data from 

unstructured data. This meaningful data brings lots of benefits to customers and businesses to get a better insight of 

the products and emotions and mood of the people on some particular topic like Elections or Movies. RNN is one of 

the most used deep learning techniques to find the sentiment and accuracy of the text. RNN is particularly used in 

case of large datasets. Large Datasets are pushed to the embedding layer by splitting them which then further are 

pushed to LSTM cells and at last forwarded to sigmoid layer. Python Jupyter Notebook is used in our testing and we 

split the output using multiple iterations defined under epoch levels for better view of the accuracy at different 
intervals and found accuracy to be around 0.8 which is good as we have built a system where any type of text related 

data can be pushed to get the sentiments and its accuracy. 
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